Organ Prolapse: Selected Procedures

Number: 0858

Table Of Contents

Policy
Applicable CPT / HCPCS / ICD-10 Codes
Background
References


Policy

Scope of Policy

This Clinical Policy Bulletin addresses organ prolapse: selected procedures.

  1. Medical Necessity

    Aetna considers the following interventions medically necessary:

    1. Dynamic magnetic resonance imaging (MRI) in persons with complex organ prolapse to supplement the physical examination;
    2. Laparoscopic suture rectopexy in persons with rectal prolapse;
    3. Lefort colpocleisis for severe utero-vaginal prolapse in elderly persons and chronically ill persons who no longer desire coital function;
    4. Sacrocolpopexy for the treatment of vaginal apical prolapse repair;
    5. Tension-free vaginal tape surgery for pelvic organ prolapse complicated by stress urinary incontinence.
  2. Experimental and Investigational

    Aetna considers the following interventions experimental and investigational because the effectiveness of these approaches has not been established:

    1. Biologic graft (e.g., Coloplast Axis Dermis Biological graft) for the treatment of vaginal apical prolapse;
    2. Combined laparoscopic-vaginal lateral suspension for the treatment of pelvic organ prolapse;
    3. Genetic testing for pelvic organ prolapse;
    4. Laser therapy for the treatment pelvic organ prolapse;
    5. Vaginal tactile imaging for diagnosis and evaluation of vaginal and pelvic floor conditions (e.g., atrophy, incontinence, pain and prolapse).
  3. Related Policies


Table:

CPT Codes / HCPCS Codes / ICD-10 Codes

Code Code Description

Information in the [brackets] below has been added for clarification purposes.   Codes requiring a 7th character are represented by "+":

CPT codes covered if selection criteria are met:

Laparoscopic suture rectopexy - no specific code:

Dynamic magnetic resonance imaging (MRI) - no specific code:

57120 Colpocleisis (Le Fort type)
57280 Colpopexy, abdominal approach
57282 Colpopexy, vaginal; extra-peritoneal approach (sacrospinous, iliococcygeus)
57288 Sling operation for stress incontinence (eg, fascia or synthetic)
57425 Laparoscopy, surgical, colpopexy (suspension of vaginal apex)

CPT codes not covered for indications listed in the CPB:

0487T Biomechanical mapping, transvaginal, with report
0552T Low-level laser therapy, dynamic photonic and dynamic thermokinetic energies, provided by a physician or other qualified health care professional
+57267 Insertion of mesh or other prosthesis for repair of pelvic floor defect, each site (anterior, posterior compartment), vaginal approach (List separately in addition to code for primary procedure) info [with biologic graft]
57284 Paravaginal defect repair (including repair of cystocele, if performed); open abdominal approach info [with biologic graft]
57285 Paravaginal defect repair (including repair of cystocele, if performed); vaginal approach [with biologic graft]
81400 - 81479 Tier 2 Molecular Pathology Procedures

HCPCS codes not covered for indications listed in the CPB:

S8948 Application of a modality (requiring constant provider attendance) to one or more areas; low-level laser; each 15 minutes

ICD-10 codes covered if selection criteria are met:

K62.2 - K62.3 Anal and rectal prolapse
N81.0 - N81.9 Female genital prolapse

ICD-10 codes not covered for indications listed in the CPB:

N39.41 - N39.498 Other specified urinary incontinence
N95.2 Postmenopausal atrophic vaginitis
R10.2 Pelvic and perineal pain
R32 Unspecified urinary incontinence
R39.81 Functional urinary incontinence

Background

Pelvic organ prolapse (POP) is a relatively common condition in women that can have a significant impact on quality of life.  Pelvic organ prolapse typically demonstrates multiple abnormalities and may involve the urethra (urethrocele), bladder (cystocele), vaginal vault, rectum (rectocele), and small bowel (enterocele).  Symtpoms may include pain, pressure, urinary and fecal incontinence, constipation, urinary retention, and defecatory dysfunction.  Total vaginal collapse occurs when the upper portion of the vagina loses its normal shape and sags or bulges down into the vaginal canal or outside of the vagina.  It is usually caused by weakness of the pelvic and vaginal tissues and muscles and may occur alone or along with prolapse of other pelvic organs.  The bladder (cystocele), urethra (urethrocele), rectum (rectocele), or small bowel (enterocele).

Magnetic resonance imaging (MRI) uses a strong magnetic field, radio waves, and computers to produce 2- or 3-dimensional images of the inside of a patient's body.  It is non-invasive and there is no ionizing radiation exposure to the patient.  Dynamic MRI differs from standard MRI in that a large number of images are formed successively and rapidly, by continually updating or reacquiring image data.  Based on the clinical evidence, dynamic MRI is an acceptable alternative modality in patients with complex organ prolapse to supplement the physical examination.

Rectal prolapse, or procidentia, is the abnormal protrusion of the rectal mucosa down to or through the anal opening.  The main symptom is a protrusion of a reddish mass from the anal opening, especially following a bowel movement. The rectal mucosa is visible and may bleed slightly.

In a laparoscopic suture rectopexy the rectum is fixed to the presacral fascia with suture as opposed to mesh or an Ivalon sponge.  Based on the long-term clinical outcomes, laparoscopic suture rectopexy can be considered a treatment option for patients with rectal prolapse.

Vaginal prolapse or pelvic organ prolapse, occurs when the structures of the pelvis protrude into or outside of the vaginal canal.  The pelvic organs are the bladder, rectum, or uterus.  The term prolapse means slipping from the normal position.  Pelvic organ prolapse is caused most commonly by pregnancy, labor, and childbirth.  It also can be related to diseases that cause increased pressure in the abdomen, such as obesity, respiratory problems with a long-lasting (chronic) cough, constipation, and pelvic organ cancers.  Pelvic organ prolapse can occur after hysterectomy for another gynecological health problem, such as endometriosis, dysfunctional uterine bleeding, or uterine fibroids. 

In the LeFort colpocleisis, anterior and posterior rectangular flaps of vaginal mucosa are removed, and the denuded areas are reapproximated with horizontal layers of interrupted absorbable sutures, leaving 2 small tunnels laterally for drainage.  Based on the clinical evidence, Lefort colpocleisis should be used only when there is a very good reason not to perform one of the usual operations for prolapse.  It is indicated for severe utero-vaginal prolapse in elderly patients and chronically ill patients who no longer desire coital function.

Levin et al (2012) noted that genetic studies require a clearly defined phenotype to reach valid conclusions.  These researchers characterized the phenotype of advanced prolapse by comparing women with stage III to IV prolapse with controls without prolapse.  Based on the pelvic organ prolapse quantification examination, women with stage 0 to stage I prolapse (controls) and those with stage III to stage IV prolapse (cases) were prospectively recruited as part of a genetic epidemiologic study.  Data regarding socio-demographics; medical, obstetric, and surgical history; family history; and body mass index (BMI) were obtained by a questionnaire administered by a trained coordinator and abstracted from electronic medical records.  There were 275 case patients with advanced prolapse and 206 controls with stage 0 to stage I prolapse.  Based on the recruitment strategy, the women were younger than the controls (64.7 ± 10.1 versus 68.6 ± 10.4 years; p < 0.001); cases were also more likely to have had 1 or more vaginal deliveries (96.0 % versus 82.0 %; p < 0.001).  There were no differences in race, BMI, and constipation.  Regarding family history, cases were more likely to report that either their mother and/or sister(s) had prolapse (44.8 % versus 16.9 %, p < 0.001).  In a logistic regression model, vaginal parity (odds ratio [OR], 4.05; 9 5% confidence interval [CI]: 1.67 to 9.85) and family history of prolapse (OR, 3.74; 95 % CI: 2.16 to 6.46) remained significantly associated with advanced prolapse.  The authors concluded that vaginal parity and a family history of prolapse are more common in women with advanced prolapse compared to those without prolapse.  These characteristics are important in phenotyping advanced prolapse, suggesting that these data should be collected in future genetic epidemiologic studies.

Wu et al (2012) evaluated the association of laminin gamma-1 (LAMC1) and advance pelvic organ prolapse.  These researchers conducted a candidate gene association of patients (n = 239) with stages III to IV prolapse and controls (n = 197) with stages 0 to I prolapse.  They used a “linkage disequilibrium (LD)-tagged” approach to identify single-nucleotide polymorphisms (SNPs) in LAMC1 and focused on non-Hispanic white women to minimize population stratification.  Additive and dominant multi-variable logistic regression models were used to test for association between individual SNPs and advanced prolapse.  A total of 14 SNPs representing 99 % coverage of LAMC1 were genotyped.  There was no association between SNP rs10911193 and advanced prolapse (p = 0.34).  However, there was a trend toward significance for SNPs rs1413390 (p = 0.11), rs20563 (p = 0.11), and rs20558 (p = 0.12).  The authors concluded that although they found that the previously reported LAMC1 SNP rs10911193 was not associated with non-familial prolapse, these results supported further investigation of this candidate gene in the pathophysiology of prolapse.

Ward et al (2014) stated that given current evidence supporting a genetic predisposition for pelvic organ prolapse, they conducted a systematic review of published literature on the genetic epidemiology of pelvic organ prolapse.  Inclusion criteria were linkage studies, candidate gene association and genome-wide association studies in adult women published in English and indexed in PubMed through December 2012, with no limit on date of publication.  Methodology adhered to the PRISMA guidelines.  Data were systematically extracted by 2 reviewers and graded by the Venice criteria for studies of genetic associations.  A meta-analysis was performed on all SNPs evaluated by 2 or more studies with similar methodology.  The meta-analysis suggested that collagen type 3 alpha 1 (COL3A1) rs1800255 genotype AA is associated with pelvic organ prolapse (OR, 4.79; 95 % CI: 1.91 to 11.98; p = 0.001) compared with the reference genotype GG in populations of Asian and Dutch women.  There was little evidence of heterogeneity for rs1800255 (p value for heterogeneity = 0.94; proportion of variance because of heterogeneity, I(2) = 0.00 %).  There was insufficient evidence to determine whether other SNPs evaluated by 2 or more papers were associated with pelvic organ prolapse.  An association with pelvic organ prolapse was seen in individual studies for estrogen receptor alpha (ER-α) rs2228480 GA, COL3A1 exon 31, chromosome 9q21 (heterogeneity logarithm of the odds score 3.41) as well as 6 SNPs identified by a genome-wide association study.  The authors concluded that overall, individual studies were of small sample size and often of poor quality.  They stated that future studies would benefit from more rigorous study design as outlined in the Venice recommendations.

Genetic Testing for Pelvic Organ Prolapse

Cartwright et al (2015) noted that family studies and twin studies demonstrated that lower urinary tract symptoms (LUTS) and pelvic organ prolapse are heritable.  In this review, these investigators aimed to identify genetic polymorphisms tested for an association with LUTS or prolapse, and to assess the strength, consistency, and risk of bias among reported associations.  PubMed and HuGE Navigator were searched up to May 1, 2014, using a combination of genetic and phenotype key words, including "nocturia", "incontinence", "overactive bladder", "prolapse", and "enuresis".  Major genetics, urology, and gynecology conference abstracts were searched from 2005 through 2013.  These researchers screened 889 abstracts, and retrieved 78 full texts.  In all, 27 published and 7 unpublished studies provided data on polymorphisms in or near 32 different genes.  Fixed and random effects meta-analyses were conducted using co-dominant models of inheritance.  They assessed the credibility of pooled associations using the interim Venice criteria.  In pooled analysis, the rs4994 polymorphism of the ADRB3 gene was associated with overactive bladder (OR, 2.5; 95 % CI: 1.7 to 3.6; n = 419).  The rs1800012 polymorphism of the COL1A1 gene was associated with prolapse (OR, 1.3; 95 % CI: 1.0 to 1.7; n = 838) and stress urinary incontinence (OR, 2.1; 95 % CI: 1.4 to 3.2; n = 190).  Other meta-analyses, including those for polymorphisms of COL3A1, LAMC1, MMP1, MMP3, and MMP9 did not show significant effects.  Many studies were at high-risk of bias from genotyping error or population stratification.  The authors concluded that these meta-analyses provided moderate epidemiological credibility for associations of variation in ADRB3 with overactive bladder, and variation of COL1A1 with prolapse.  Moreover, they stated that clinical testing for any of these polymorphisms cannot be recommended based on current evidence.

Khadzhieva and colleagues (2017) stated that POP is a highly disabling condition common for a vast number of women worldwide.  These investigators performed a systematic review of expression studies on both specific gene and whole-genome/proteome levels and an in silico analysis of publicly available datasets related to POP development.  The most extensively investigated genes in individual studies were related to extra-cellular matrix (ECM) organization.  A total of 3 pre-menopausal and 2 post-menopausal sets from 2 Gene Expression Omnibus (GEO) studies (GSE53868 and GSE12852) were analyzed; Gene Ontology (GO) terms related to tissue repair (locomotion, biological adhesion, immune processes and other) were enriched in all 5 datasets.  Co-expression was higher in cases than in controls in 3 pre-menopausal sets.  The shared between 2 or more datasets up-regulated genes were enriched with those related to inflammatory bowel disease (IBD) in the NHGRI GWAS Catalog.  ECM-related genes were not over-represented among differently expressed genes.  The authors concluded that up-regulation of genes related to tissue renewal probably reflected compensatory mechanisms aimed at repair of damaged tissue; and inefficiency of this process may have different origins including age-related deregulation of gene expression.

The authors stated that this study had some drawbacks with the main limitation being in a small number of datasets and a small number of samples in these datasets.  These data appeared to be insufficient for construction of co-expression networks.  The results of the enrichment analysis for the overlapping up-regulated genes with GWAS association signals should be discussed as preliminary.  They stated that these results raised a question rather than provided an answer on a possible shared genetic component for IBD and POP.  The authors noted that this analysis provided some in-depth data important for understanding POP pathogenesis.  In terms of genetic overlap between IBD and POP, the work has translational impact.  Moreover, they noted that the study findings are biologically plausible; however, they require verification in independent studies.

Biologic Graft

On behalf of the Society of Gynecologic Surgeons Systematic Review Group, Shimpf and associates (2016) updated clinical practice guidelines on graft and mesh use in transvaginal pelvic organ prolapse repair based on systematic review. Eligible studies, published through April 2015, were retrieved through ClinicalTrials.gov, Medline, and Cochrane databases and bibliography searches.  These investigators included studies of transvaginal prolapse repair that compared graft or mesh use with either native tissue repair or use of a different graft or mesh with anatomic and symptomatic outcomes with a minimum of 12 months of follow-up.  Study data were extracted by 1 reviewer and confirmed by a 2nd reviewer.  Studies were classified by vaginal compartment (anterior, posterior, apical, or multiple), graft type (biologic, synthetic absorbable, synthetic non-absorbable), and outcome (anatomic, symptomatic, sexual function, mesh complications, and return to the operating room).  They found 66 comparative studies reported in 70 articles, including 38 randomized trials; quality of the literature has improved over time, but some outcomes still show heterogeneity and limited power.  In the anterior vaginal compartment, synthetic non-absorbable mesh consistently showed improved anatomic and bulge symptom outcomes compared with native tissue repairs based on meta-analyses.  Other subjective outcomes, including urinary incontinence or dyspareunia, generally did not differ.  Biologic graft or synthetic absorbable mesh use did not provide an advantage in any compartment.  Synthetic mesh use in the posterior or apical compartments did not improve success.  Mesh erosion rates ranged from 1.4 to 19 % at the anterior vaginal wall, but 3 to 36 % when mesh was placed in multiple compartments.  Operative mesh revision rates ranged from 3 to 8 %.  The authors concluded that synthetic mesh augmentation of anterior wall prolapse repair improved anatomic outcomes and bulge symptoms compared with native tissue repair.  On the other hand, biologic grafts did not improve prolapse repair outcomes in any compartment; mesh erosion occurred in up to 36 % of patients, but re-operation rates were low.

Coloplast offers the Axis dermis allograft that is indicated for the treatment of POP.  The material consists of donated human tissue (cadaver) placed through a rigorous Tutoplast cleaning process to inactivate any transmissible pathogens.

Juma and Raheem (2017) evaluated the safety and long-term efficacy of solvent-dehydrated dermal allograft (SDDG; AxisTM) use for cystocele repair.  A total of 184 patients completed a minimum follow-up of 12 months . Incontinence Impact Questionnaire (IIQ), Urogenital Distress Inventory (UDI), and Visual Analogue Scale (VAS) were used pre- and post-operatively.  Recurrent cystocele grade greater than or equal to II and/or repeat cystocele repair were considered objective failure.  Pre-operatively, 17 patients (10 %) had grade-IV cystocele, 87 (47 %) grade-III, 70 (38 %) grade-II, and 10 (5 %) grade-I.  All patients underwent SDDG cystocele repair with/without vaginal sling and/or POP repair and/or hysterectomy.  Mean hospital stay was 0.58 days (range of 0 to 4), mean estimated blood loss (EBL) was 111 ml, and mean length of Foley catheterization was 1.85 days (range of 0 to 28).  Post-operatively, 113 patients (64 %) had no recurrent cystocele, 34 (19 %) had grade-I, 19 (11 %) grade-II, and 10 (6 %) grade-III cystocele.  None had grade-IV cystocele; 19 patients (10.3 %) underwent repeat cystocele repair; 38 patients (21.6 %) had post-operative recurrence (recurrent cystocele grade greater than or equal to II and/or repeat cystocele repair).  Dermal allograft-related AEs included 1 (0.5 %) allograft vaginal exposure, dyspareunia 1 (0.5 %), and transient hydronephrosis in 1 (0.5 %).  There were no vascular, vesical, visceral or neurological injuries.  The authors concluded that these findings showed that SDDG-augmented cystocele repair was a safe procedure, with low morbidity, and its success was comparable to other techniques.

Seitz and colleagues (2020) stated that suture-based hysteropexy is carried out for POP with varying results; and graft augmentation may improve outcomes.  The se researchers examined if vaginal hysteropexy with mesh reduces recurrence at 1-year post-operative examination compared with hysteropexy with allograft.  Data were collected for patients who underwent vaginal hysteropexy with either mesh "Uphold" (referred to as "mesh") or a cadaveric allograft "Axis or Repliform" (referred to as "dermal").  The primary outcome was anatomic success defined as no prolapse POP Quantification System stage II or less at 12 months after surgery.  The secondary outcomes were recurrence to the hymen and a composite score (any positive response to the 20-item Pelvic Floor Distress Inventory question 3 and cervix greater than or equal to -1/2 total vaginal length at rest or as reference point 3 cm proximal to or above the hymenal ring anteriorly [Ba] greater than or equal to 0) measured at 12 months.  A total of 274 patients returned for their 1-year post-operative examination: 93.5 % of the mesh group (231/247 subjects) and 95.5 % of the dermal group (43/45 subjects).  The mesh group had fewer recurrences to or beyond POP Quantification System stage II (mesh 18 % versus dermal 29 %, p = 0.03), to the hymen (2.6 % versus 9.3 %, p = 0.007), or based on composite score (19 % versus 33 %, p = 0.007).  Questionnaire data improved more in the mesh group (p < 0.0001).  The exposure rate was 5.75 % (13/247) in the mesh group.  Re-operation rate was greater in the dermal group (mesh 4.3 % versus dermal 7.3%, p = 02).  The authors concluded that hysteropexy augmented with mesh reduced the recurrence at 1 year compared with hysteropexy with allograft; fewer patients in the mesh group felt a bulge at 1 year  (p < 0.0001).  Moreover, these researchers stated that these findings need to be weighed against the mesh exposure rate of 5.75 %.

Sacrocolpopexy

Alas and Anger (2015) stated that pelvic organ prolapse is a prevalent condition, with up to 12 % of women requiring surgery in their lifetime. These investigators reviewed the therapeutic options for apical prolapse, specifically.  Both conservative and surgical management options are acceptable and should be based on patient preferences.  Pessaries are the most commonly used conservative management options.  Guided pelvic floor muscle training is more beneficial than self-taught Kegel exercises, though may not be effective for high stage or apical prolapse.  Surgical options include abdominal and vaginal approaches, the latter of which can be performed open, laparoscopically, and robotically.  A systematic review has demonstrated that sacrocolpopexy has better long-term success for treatment of apical prolapse than vaginal techniques, but vaginal surgery can be considered an acceptable alternative.  Recent data has demonstrated equal effectiveness between uterosacral ligament suspension and sacrospinous ligament suspension at 1 year.  To-date, 2 randomized controlled trials (RCTs) have demonstrated equal effectiveness between robotic and laparoscopic sacrocolpopexy.  Though abdominal approaches may have increased long-term durability, when counseling their patients, surgeons should consider longer operating times and increased pain and cost with these procedures compared to vaginal surgery.

The authors concluded the following:

  • Pelvic floor physical therapy (PFPT) with a physical therapist is the best approach to conservative management of apical prolapse
  • Pessaries should be managed with regular follow-up care to minimize complications
  • Minimally invasive sacrocolpopexy appears as effective as the gold standard abdominal sacrocolpopexy (ASC)
  • Robotic assisted sacrocolpopexy (RASC) and laparoscopic assisted sacrocolpopexy (LASC) are equally effective and should be utilized by pelvic floor surgeons based on their skill level and expertise in laparoscopy
  • Uterosacral ligament suspension (USLS) and sacrospinous ligament suspension (SSLS) are considered equally effective procedures and can be combined with a vaginal hysterectomy
  • Obliterative procedures are effective but are considered definitive surgery
  • The use of transvaginal mesh has been shown in some studies to be superior to native tissue repairs with regard to anatomic outcomes, but complication rates are higher. Transvaginal mesh should be reserved for surgeons with adequate training so that complications are minimized

Costantini and colleagues (2016) noted that sacrocolpopexy is considered a reference operation for pelvic organ prolapse repair but its indications and technical aspects are not standardized. A faculty of urogynecology surgeons critically evaluated the peer-reviewed literature published until September 2015 aiming to produce evidence-based recommendations.  PubMed, Medline, and the Cochrane Library were searched for RCTs published in English language.  The modified Oxford data grading system was used to access quality of evidence and grade recommendations.  The Delphi process was implemented when no data was available.  A total of 13 RCTs were identified, that provided levels I to III of evidence on various aspects of sacrocolpopexy.  Sacrocolpopexy is the preferred procedure for vaginal apical prolapse (Grade A), monofilament polypropylene mesh is the graft of choice and the laparoscopic approach is the preferred technique (Grade B).  Grade B recommendation supports the performance of concomitant procedures at the time of sacrocolpopexy.  Grade C recommendation suggests either permanent or delayed sutures for securing the mesh to the vagina, permanent tackers or sutures for securing the mesh to the sacral promontory and closing the peritoneum over the mesh.  A Delphi process Grade C recommendation supports proceeding with sacrocolpopexy after uncomplicated, intra-operative bladder or small bowel injuries.  The authors concluded that there is insufficient or conflicting data on hysterectomy (subtotal or total) or uterus preservation during sacrocolpopexy (Grade D).  They stated that sacrocolpopexy remains an excellent option for vaginal apical prolapse repair.  The issue of uterine preservation or excision during the procedure requires further clarification.  Variations exist in the performance of most technical aspects of the procedure.

Also, an UpToDate review on “Pelvic organ prolapse in women: Surgical repair of apical prolapse (uterine or vaginal vault prolapse)” (Kenton, 2016) states that “No high quality evidence is available to guide surgeons regarding uterine preservation at the time of vaginal apical suspension procedures … Apical prolapse repair via open abdominal sacral colpopexy is more effective at restoring vaginal topography than traditional vaginal repairs, although subjective outcomes are similar after the two types of procedures. We suggest abdominal sacral colpopexy rather than transvaginal repair for most women undergoing apical prolapse repair.  Laparoscopic sacrocolpopexy is as effective as open sacrocolpopexy, but results in decreased blood loss and shorter hospital stays.  For women with apical prolapse undergoing abdominal sacral colpopexy, we recommend synthetic mesh over biografts.  Synthetic mesh use in sacral colpopexy reduces the risk of recurrent apical prolapse … For women undergoing repair of apical prolapse, a concomitant continence procedure is often performed to treat or prevent stress urinary incontinence.  Mid-urethral slings are the preferred concomitant procedure if a vaginal route is used for prolapse repair; some surgeons also place a mid-urethral sling at the time of abdominal sacral colpopexy”.

Furthermore, and UpToDate review on “Pelvic organ prolapse in women: Choosing a primary surgical procedure” (Jelovsek, 2016) states that “The common wisdom has been that retaining the uterus increases the risk of recurrent prolapse, although there are no data to support this. The role of hysterectomy at the time of surgery for POP is currently debatable and there are no data supporting hysterectomy at the time of surgery for POP.  There are 3 under-powered studies that describe uterine preservation at the time of surgery for POP and uterine preservation did not affect the risk of POP recurrence”.

Surgical Treatment of Primary Pelvic Organ Prolapse

On behalf of 5 French academic societies (Association Française d'Urologie, Collège National des Gynécologues et Obstétriciens Français, Société Interdisciplinaire d'Urodynamique et de Pelvi-Périnéologie, Société Nationale Française de Colo-proctologie, and Société de Chirurgie Gynécologique et Pelvienne), Le Normand and colleagues (2016) developed guidelines for surgery for primary POP.  The guidelines listed the following:

  • It is useful to evaluate symptoms, their impact, women's expectations, and to describe the prolapse prior to surgery (grade C).
  • In the absence of any spontaneous or occult urinary sign, there is no reason to perform urodynamics (grade C).
  • When a sacrocolpopexy is indicated, laparoscopy is recommended (grade B).
  • A bowel preparation before vaginal (grade B) or abdominal surgery (grade C) is not recommended.
  • There is no argument to systematically use a rectovaginal mesh to prevent rectocele (grade C).
  • The use of a vesico-vaginal mesh by vaginal route should be discussed taking into account an uncertain long-term risk-benefit ratio (grade B).
  • Levator myorrhaphy is not recommended as a 1st-line rectocele treatment (grade C).
  • There is no indication for a vaginal mesh as a 1st-line rectocele treatment (grade C).
  • There is no reason to systematically perform a hysterectomy during prolapse repair (grade C).
  • It is possible to not treat stress incontinence at the time of prolapse repair, if the woman is advised of the possibility of a 2-step surgical treatment (grade C).

Trans-Labial Ultrasound for the Assessment of Levator Ani Defects and Levator Ani Biometry in Pelvic Organ Prolapse

In a systematic review, Notten and colleagues (2017) evaluated the diagnostic accuracy and clinical implications of trans-labial 3-dimensional (3D) ultrasound for the assessment of levator ani defects and biometry in women with POP.  These investigators performed a systematic literature search through computerized databases including Medline (via PubMed), Embase (via OvidSP), and the Cochrane Library using both medical subject headings and text terms from January 1, 2003, to December 25, 2015.  They included articles that reported on POP status and diagnostic accuracy measurements with trans-labial 3D ultrasound or trans-perineal ultrasound for the detection of levator ani defects or for measuring pelvic floor biometry, that is, levator ani hiatus, or reported on the clinical relevance of using trans-labial 3D ultrasound for levator ani defects or measuring pelvic floor biometry in women with POP.  A total of 31 articles were selected in accordance with parts of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines that can be applied to studies of diagnostic accuracy; 22 articles (71 %) were co-authored by 1 expert in this field.  Detecting levator ani defects with trans-labial 3D ultrasound compared with MRI showed a moderate-to-good agreement, whereas measuring hiatal biometry on trans-labial 3D ultrasound compared with MRI showed a moderate-to-very good agreement.  The inter-observer agreement for diagnosing levator ani defects and measuring the levator hiatal area showed a moderate-to-very good agreement.  Furthermore, levator ani defects increase the risk of cystocele and uterine prolapse, and levator ani defects were associated with recurrent POP.  Finally, a larger hiatus was associated with POP and recurrent POP.  The authors concluded that trans-labial 3D ultrasound is reproducible for diagnosing levator ani defects and ballooning hiatus.  Both levator ani defects and a larger hiatal area were, in a selected population of patients with pelvic floor dysfunction, associated with POP and recurrent POP.  However, these researchers stated that more research is needed regarding external validation since most of the data in this review were co-authored by 1 expert in this field.

Furthermore, an UpToDate review on “Pelvic organ prolapse in women: Diagnostic evaluation” (Fashokun and Rogers, 2017) does not mention ultrasonography as a diagnostic tool.

Use of Mesh Repair for Prolapse of Anterior Compartment of the Vagina

In a Cochrane review, Maher and colleagues (2017) determined the safety and effectiveness of surgery for anterior compartment prolapse.  These investigators searched the Cochrane Incontinence Group Specialised Register, including the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Medline In Process (August 23, 2016), hand-searched journals and conference proceedings (February 15, 2016) and searched trial registers (August 1, 2016); RCTs that examined surgical operations for anterior compartment prolapse were selected for analysis  Two review authors independently selected trials, assessed risk of bias and extracted data.  Primary outcomes were awareness of prolapse, repeat surgery and recurrent prolapse on examination.  These researchers included 33 trials (3,332 women).  The quality of evidence ranged from very low-to-moderate.  Limitations were risk of bias and imprecision.  They summarized results for the main comparisons.  Native tissue versus biological graft -- Awareness of prolapse: Evidence suggested few or no differences between groups (risk ratio (RR) 0.98, 95 % CI: 0.52 to 1.82; 5 RCTs; 552 women; I2 = 39 %; low-quality evidence), indicating that if 12 % of women were aware of prolapse after biological graft, 7 % to 23 % would be aware after native tissue repair.  Repeat surgery for prolapse: Results showed no probable differences between groups (RR 1.02, 95 % CI: 0.53 to 1.97; 7 RCTs; 650 women; I2 = 0 %; moderate-quality evidence), indicating that if 4 % of women required repeat surgery after biological graft, 2 % to 9 % would do so after native tissue repair.  Recurrent anterior compartment prolapse: Native tissue repair probably increased the risk of recurrence (RR 1.32, 95 % CI: 1.06 to 1.65; 8 RCTs; 701 women; I2 = 26 %; moderate-quality evidence), indicating that if 26 % of women had recurrent prolapse after biological graft, 27 % to 42 % would have recurrence after native tissue repair.  Stress urinary incontinence (SUI): Results showed no probable differences between groups (RR 1.44, 95 % CI: 0.79 to 2.64; 2 RCTs; 218 women; I2 = 0 %; moderate-quality evidence).  Dyspareunia: Evidence suggested few or no differences between groups (RR 0.87, 95 % CI: 0.39 to 1.93; 2 RCTs; 151 women; I2 = 0 %; low-quality evidence).  Native tissue versus polypropylene mesh Awareness of prolapse: This was probably more likely after native tissue repair (RR 1.77, 95 % CI: 1.37 to 2.28; 9 RCTs; 1,133 women; I2 = 0 %; moderate-quality evidence), suggesting that if 13 % of women were aware of prolapse after mesh repair, 18 % to 30 % would be aware of prolapse after native tissue repair.  Repeat surgery for prolapse: This was probably more likely after native tissue repair (RR 2.03, 95 % CI: 1.15 to 3.58; 12 RCTs; 1,629 women; I2 = 39 %; moderate-quality evidence), suggesting that if 2 % of women needed repeat surgery after mesh repair, 2 % to 7 % would do so after native tissue repair.  Recurrent anterior compartment prolapse: This was probably more likely after native tissue repair (RR 3.01, 95 % CI: 2.52 to 3.60; 16 RCTs; 1,976 women; I2 = 39 %; moderate-quality evidence), suggesting that if recurrent prolapse occurred in 13 % of women after mesh repair, 32 % to 45 % would have recurrence after native tissue repair.  Repeat surgery for prolapse, SUI or mesh exposure (composite outcome): This was probably less likely after native tissue repair (RR 0.59, 95 % CI: 0.41 to 0.83; 12 RCTs; 1,527 women; I2 = 45 %; moderate-quality evidence), suggesting that if 10 % of women require repeat surgery after polypropylene mesh repair, 4 % to 8 % would do so after native tissue repair.  De novo SUI: Evidence suggested few or no differences between groups (RR 0.67, 95 % CI: 0.44 to 1.01; 6 RCTs; 957 women; I2 = 26 %; low-quality evidence).  No evidence suggested a difference in rates of repeat surgery for SUI.  Dyspareunia (de novo): Evidence suggested few or no differences between groups (RR 0.54, 95 % CI: 0.27 to 1.06; 8 RCTs; n = 583; I2 = 0 %; low-quality evidence).  Native tissue versus absorbable mesh.  Awareness of prolapse: It is unclear whether results showed any differences between groups (RR 0.95, 95 % CI: 0.70 to 1.31; 1 RCT; n = 54; very low-quality evidence).  Repeat surgery for prolapse: It is unclear whether results showed any differences between groups (RR 2.13, 95 % CI: 0.42 to 10.82; 1 RCT; n = 66; very low-quality evidence).  Recurrent anterior compartment prolapse: This is probably more likely after native tissue repair (RR 1.50, 95 % CI: 1.09 to 2.06; 3 RCTs; n = 268; I2 = 0 %; moderate-quality evidence), suggesting that if 27 % have recurrent prolapse after mesh repair, 29 % to 55 % would have recurrent prolapse after native tissue repair.   SUI: It is unclear whether results showed any differences between groups (RR 0.72, 95 % CI: 0.50 to 1.05; 1 RCT; n = 49; very low-quality evidence).  Dyspareunia: No data were reported.  The authors concluded that biological graft repair or absorbable mesh provided minimal advantage compared with native tissue repair.  Native tissue repair was associated with increased awareness of prolapse and increased risk of repeat surgery for prolapse and recurrence of anterior compartment prolapse compared with polypropylene mesh repair.  However, native tissue repair was associated with reduced risk of de-novo SUI, reduced bladder injury, and reduced rates of repeat surgery for prolapse, SUI and mesh exposure (composite outcome).  They stated that current evidence does not support the use of mesh repair compared with native tissue repair for anterior compartment prolapse owing to increased morbidity.  Many transvaginal polypropylene meshes have been voluntarily removed from the market, and newer light-weight transvaginal meshes that are available have not been assessed by RCTs.  These investigators stated that clinicians and women should be cautious when utilizing these products, as their safety and effectiveness have not been established.

Chughtai and associates (2017) stated that mesh (a synthetic graft) has been used in POP repair and SUI to augment and strengthen weakened tissue.  Polypropylene mesh has come under scrutiny by the Food and Drug Administration (FDA).  In an observational cohort study, these researchers examined the rates of mesh complications and invasive re-intervention following the placement of vaginal mesh for POP repair or SUI surgery.  Participants were women who underwent trans-vaginal repair for POP or SUI with mesh between January 1, 2008, and December 31, 2012, and were followed-up through December 31, 2013.  They were divided into the following 4 groups based on the amount of mesh exposure:
  1. trans-vaginal POP repair surgery with mesh and concurrent sling use (vaginal mesh plus sling group),
  2. transvaginal POP repair with mesh and no concurrent sling use (vaginal mesh group),
  3. transvaginal POP repair without mesh but concurrent sling use for SUI (POP sling group), and
  4. sling for SUI alone (SUI sling group). 

The primary outcome was the occurrence of mesh complications and repeated invasive intervention within 1 year after the initial mesh implantation.  A time-to-event analysis was performed to examine the occurrence of mesh erosions and subsequent re-intervention.  Secondary analyses of an age association (less than 65 versus greater than or equal to 65 years) were conducted.  The study identified 41,604 women who underwent 1 of the 4 procedures. The mean (SD) age of women at their initial mesh implantation was 56.2 (13.0) years. The highest risk of erosions was found in the vaginal mesh plus sling group (2.72%; 95% CI, 2.31%-3.21%) and the lowest in the SUI sling group (1.57 %; 95 % CI: 1.41 % to 1.74 %).  The risk of repeated surgery with concomitant erosion diagnosis was also the highest in the vaginal mesh plus sling group (2.13 %; 95 % CI: 1.76 % to 2.56 %) and the lowest in the SUI sling group (1.16 %; 95 % CI: 1.03 % to 1.31 %).  The authors concluded that the combined use of POP mesh and SUI mesh sling was associated with the highest erosion and repeated intervention risk, while mesh sling alone had the lowest erosion and repeated intervention risk.  They stated that there is evidence for a dose-response relationship between the amount of mesh used and subsequent mesh erosions, complications, and invasive repeated intervention.

Vaginal Tactile Imaging

Egorov and colleagues (2010) noted that changes in the elasticity of the vaginal walls, connective support tissues, and muscles are thought to play an important role in the development of pelvic organ prolapse (POP).  It creates 2 predominant concerns specific to the biomechanical properties of pelvic support tissues:
  1. how does tissue elasticity affect the development of POP, and
  2. how can functional elasticity be maintained through reconstructive surgery.

These researchers designed a prototype of vaginal tactile imager (VTI) for visualization and assessment of elastic properties of pelvic floor tissues.  In a pilot study (n =13), these investigators analyzed applicability of VTI for evaluation of reconstructive surgery results and characterization of normal and POP conditions.  The authors concluded that this trial demonstrated that VTI allowed imaging of vaginal walls with increased rigidity due to implanted mesh grafts following reconstructive pelvic surgery and VTI had the potential for prolapse characterization and detection.

van Raalte and Egorov (2015) stated that VTI records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle (PFM) contractions.  These researchers validated VTI and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions.  A total of 22 women with normal and prolapse conditions were examined by a VTI probe.  They identified 9 parameters that were sensitive to prolapse conditions (p < 0.05 for 1-way ANOVA and/or p < 0.05 for t-test with correlation factor r from -0.73 to -0.56).  The list of parameters included pressure, pressure gradient and dynamic pressure response during PFM at identified locations.  The authors concluded that these parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.  Moreover, they stated that further studies with larger sample sizes, investigating a variety of other pelvic floor conditions, and use in the evaluation of interventions including physical therapy, conservative management options and surgical correction are needed to further explore diagnostic values of VTI.

The authors stated that this study had several drawbacks:
  1. its small sample size (n = 22),
  2. the lack of data to correlate PFM assessment with the site of prolapse, degree of symptom severity for detected prolapse or associated urinary or fecal continence symptoms. It was thought a sub-analysis may be misleading given the limited sample size and should be reserved for future studies.  There may be very important differences in functional PFM recordings between a patient with a large distention defect of the vaginal wall versus a primary apical defect, symptomatic versus asymptomatic prolapse or among patients with associated urinary or rectal complaints.  For future studies, it would be important to evaluate symptom severity for pelvic floor disorders to examine if there is a correlation between PFM evaluation, resting tone and associated elasticity measurements of the underlying tissue.  This may help clinicians further differentiate types of pelvic floor conditions, their underlying severity and how to tailor treatments to best care for the individual patient,
  3. the clinician obtaining the VTI measurements was not blinded to the POP quantification system (POP-Q) measurements.  The procedure for VTI recording was standardized and would be difficult to bias the recording based on expectations of the measurements, however this did remain a potential bias.  To diminish the potential influence of this bias, the images were evaluated and parameter values were extracted by another observer who did not have the clinical information available until the data scaling versus prolapse stage, age and parity.
Lucente and associates (2017) developed a new approach for the biomechanical characterization of vaginal conditions, muscles, and connective tissues in the female pelvic floor -- VTI allows biomechanical assessment of the soft tissue along the entire length of the anterior, posterior, and lateral vaginal walls at rest, with manually applied deflection pressures and with muscle contraction, muscle relaxation, and Valsalva maneuver.  Vaginal tactile imaging allows a large body of measurements to evaluate individual variations in tissue elasticity, support defects, as well as pelvic muscle function.  Presuming that
  1. the female pelvic floor organs are suspended by ligaments against which muscles contract to open or close the outlets, and
  2. damaged ligaments weaken the support and may reduce the force of muscle contraction,

these researchers made an attempt to characterize multiple pelvic floor structures from VTI data.  All of the 138 women enrolled in the study were successfully examined with the VTI.  The participants have had normal pelvic support or POP (stages I to IV).  The average age of this group of subjects was 60 ± 15 years.  These investigators transposed a set of 31 VTI parameters into a quantitative characterization of pelvic muscles and ligamentous structures.  Interpretation of the acquired VTI data for normal pelvic floor support and prolapse conditions is proposed based on biomechanical assessment of the functional anatomy.  The authors concluded that VTI allowed biomechanical characterization of female pelvic floor structures and tissues in-vivo, which may help to optimize treatment of the diseased conditions such as prolapse, incontinence, atrophy, and some forms of pelvic pain.

The authors stated that among the VTI limitations were image dependence on operator’s skill level, contact conditions, and probe size.  In general, an examination with a VTI probe is operator-dependent, similar to colonoscopy.  Operator training is needed to improve and standardize operator skills.  Minimization or elimination of the operator dependence is also achieved by intentional probe design, data processing algorithms, and real-time feedback to the operator.  The VTI intra- and inter-operator measurement reproducibility study with 12 subjects demonstrated intra-class correlation coefficients in the range from 0.80 to 0.92 and median tactile image deviations from 6.6 % to 15.6 %.  The lubrication helps to keep contact conditions reproducible.  Tactile imaging probes with different size and contact area of 15 μm(2), and 20 cm(2) demonstrated different absolute values of P(x,y,z) acquired for the same tissue.  But comparison of the 2 image data sets revealed a lot of similarity and common features; both probes showed close relative distribution within P(x,y,z) and enabled similar tissue characterization.

In an observational, case-controlled clinical study, Egorov and co-workers (2018) discussed a new approach for quantitative biomechanical characterization of the vagina.  Data were analyzed for 42 subjects with normal pelvic floor support.  The average age was 52 years (range of 26 to 90 years).  These researchers introduced 8 VTI parameters to characterize vaginal conditions:
  1. maximum resistance force to insertion (Newtons),
  2. insertion work (milliJoules),
  3. maximum stress-to-strain ratio (elasticity; kiloPascals per millimeter),
  4. maximum pressure at rest (kiloPascals),
  5. anterior-posterior force at rest (Newtons),
  6. left-right force at rest (Newtons),
  7. maximum pressure at muscle contraction (kiloPascals), and
  8. muscle contraction force (Newtons). 

These researchers observed low-to-moderate correlation of these parameters with subject age and no correlation with subject weight; 6 of 8 parameters demonstrated a p value of less than 0.05 for 2 subject subsamples divided by age (less than or equal to 52 versus greater than 52 years), which meant 6 VTI parameters change with age.  The authors concluded that VTI allowed biomechanical and functional characterization of the vaginal conditions that can be used for

  1. understanding "normal" vaginal conditions,
  2. quantification of the deviation from normality,
  3. personalized treatment (radiofrequency, laser, or plastic surgery), and
  4. assessment of the applied treatment outcome. 

Moreover, they stated that further research with a more representative sample will show more comprehensive distributions and peculiar features for normal values.  This study had 2 major drawbacks:

  1. its relatively small sample size (n = 42), and
  2. despite normal pelvic floor support (no prolapse), some analyzed subjects came to the urogynecologic office with some problematic conditions affecting the pelvic floor.

Anterior Colporrhaphy Augmented with Synthetic Mesh for Pelvic Organ Prolapse

de Mattos Lourenco and colleagues (2019) noted that the use of synthetic mesh in POP surgery is being closely scrutinized because of serious concerns regarding life-changing complications such as erosion, pain, infection, bleeding, dyspareunia, organ perforation, and urinary problems.  Randomized trials and their syntheses in meta-analysis offer a unique opportunity to examine safety and efficacy.  However, outcomes and outcome measures need to be consistently selected, collected, and reported across randomized trials to be effectively combined in systematic reviews.  These investigators examined outcome and outcome measure reporting across RCTs on surgical interventions using synthetic mesh for POP.  They carried out a systematic review of RCTs using synthetic mesh for the treatment of POP.  The selected studies were evaluated using Jadad and MOMENT criteria; outcomes and outcome measures were systematically identified and categorized.  A total of 71 randomized trials were included; 24 different types of mesh were identified.  Included trials reported 110 different outcomes and 60 outcome measures.  Erosion (40 trials, 78 %), pain (29 trials, 56 %), bleeding (31 trials, 61 %), and dyspareunia (25 trials, 49 %) were the most frequently reported outcomes.  The longest follow-up was 74 months.  The authors concluded that most randomized trials evaluating surgical interventions using synthetic mesh for POP failed to report on clinically important outcomes and to evaluate safety and efficacy over the medium-term and long-term.  These researchers stated that developing and implementing a minimum data-set, known as a core outcome set, in future vaginal prolapse trials could help address these issues.

Slade and colleagues (2020) noted that anterior compartment prolapse is the most common POP with a range of surgical therapeutic options available.  These researchers compared the clinical effectiveness and cost-effectiveness of surgical treatments for the repair of anterior POP.  They conducted a systematic review of RCTs comparing surgical treatments for women with POP.  Network meta-analysis was possible for anterior POP, same-site recurrence outcome.  A Markov model was used to compare the cost-utility of surgical treatments for the primary repair of anterior POP from a United Kingdom National Health Service perspective.  These investigators identified 27 eligible trials for the network meta-analysis involving 8 surgical treatments tested on 3,194 women.  Synthetic mesh was the most effective in preventing recurrence at the same site.  There was no evidence to suggest a difference between synthetic non-absorbable mesh, synthetic partially absorbable mesh, and biological mesh.  The cost-utility analysis, which incorporated effectiveness, complications and cost data, found non-mesh repair to have the highest probability of being cost-effective.  The conclusions were robust to model inputs including effectiveness, costs and utility values.  The authors concluded that anterior colporrhaphy augmented with mesh appeared to be cost-ineffective in women requiring primary repair of anterior POP.  There is a need for further research on the  safety and long-term effectiveness of mesh products to establish their relative cost-effectiveness with a greater certainty.

Laser Therapy for the Treatment of Pelvic Organ Prolapse

Mackova and colleagues (2020) noted that laser therapy is now being proposed for the treatment of POP and urinary incontinence (UI).  In a systematic review, these researchers examined the available literature on laser therapy for POP and UI.  PubMed, Web Of Science and Embase were searched for relevant articles, using a 3-concept (POP, UI, laser therapy) search engine composed as (concept 1 OR concept 2) AND concept 3; only full-text clinical studies in English were included.  Data on patient characteristics, laser setting, treatment outcome and adverse events (AEs) were independently collected by 2 researchers.  There was a lack of methodological uniformity so meta-analysis was not possible and the results were presented narratively.  A total of 31 studies entailing 1,530 adult women met the inclusion criteria.  All studies showed significant improvement either on UI, POP or both; however the heterogeneity of laser settings, application and outcome measures was huge.  Only 1 study was a RCT, 2 studies were controlled cohort studies.  All 3 were on UI and used standardized validated tools.  The risk of bias in the RCT was low on all 7 domains; the controlled studies had a serious risk of bias.  No major AEs were reported, mild pain and burning sensation were the most commonly described AEs.  The authors concluded that all studies on vaginal and/or urethral laser application for POP and UI reported improvement, however, the quality of studies needs to be improved.  These researchers stated that there is weak evidence that laser therapy is effective for POP and UI.

Furthermore, an UpToDate review on “Pelvic organ prolapse in women: Epidemiology, risk factors, clinical manifestations, and management” (Rogers and Fashokun, 2020) does not mention laser therapy as a management / therapeutic option. 

Pelvic Floor Ultrasonography for the Diagnosis of Pelvic Organ Prolapse

Gao and colleagues (2020) noted that POP is a common medical condition universally.  In addition to physical examination, experts have increasingly turned their attention to ultrasound (US) in diagnosing POP for its low cost and dynamic imaging.  In a systematic review, these researchers examined the methods of pelvic floor US in diagnosing POP, which has been lacking up till now.  They included original papers comparing the outcome of the Pelvic Organ Prolapse Quantification system and US, published from 2008 to present in English, using electronic data-bases (Medline, Embase, CENTRAL, PubMed).  All stages of the review were conducted in parallel by 2 reviewers.  A total of 15 papers were included.  These investigators found that current methods have advantages and limitations.  The main methods are to measure the levator hiatus-related parameters and distances between the lowest point of the pelvic organs and reference lines during Valsalva maneuver, contraction, and at rest.  The authors concluded that pelvic floor US is valuable in diagnosing POP, yet suffers from a weakness in precision compared with physical examination.  From the existing research, these researchers found that the differences in baseline data such as weight, height, ethnicity, etc., may affect the cut-offs of the afore-mentioned parameters.  They stated that further research is needed to find one appropriate cut-off for each parameter, even if it is necessary to set group values for every parameter according to varying situations.

Furthermore, an UpToDate review on “Pelvic organ prolapse in women: Diagnostic evaluation” (Fashokun and Rogers, 2020) states that “Perineal ultrasound -- Ultrasound of the perineum can identify levator ani defects as well as prolapse of the bladder, rectum, and/or intestines into the vagina.  The ability to diagnose levator ani evulsion from the symphysis pubis after childbirth or other perineal trauma is emerging as an important predictor of both the development of prolapse as well as the success and failure of prolapse repairs”.

Combined Laparoscopic-Vaginal Lateral Suspension for the Treatment of Pelvic Organ Prolapse

In a retrospective, observational study, Martinello et al (2019) described the outcomes of laparoscopic lateral suspension by mesh for repair of POP.  These researchers collected medical records of 48 patients treated between May 2016 and April 2018 in 2 different centers in Italy.  Pre- and post-operative clinical evaluations as well as patients' satisfaction scores were recorded.  Patients were followed-up for 2 years.  Statistical analysis was determined using the Chi-square test in intention-to-treat (ITT) and per-protocol analyses, while Kaplan-Meier curves were built for evaluating the prolapse recurrence and the symptoms recurrence.  The Steel-Dwass test for pair-wise comparisons was used to compare median scores from the King's General Health Perception Questionnaire answers.  Regarding the anatomical result, the outcome was either optimal or satisfactory (PoP-Q of less than or equal to 1) at 12 months in 92 % of patients for anterior compartment, in 100 % for apical compartment, and in 75 % for posterior compartment (ITT).  Kaplan-Meier curves depicted a repair of prolapse in 70 % of cases, with better outcomes for the anterior and the apical compartment.  Patient self-perception of health was over 80 % at each follow-up evaluation.  The authors concluded that laparoscopic lateral suspension is a reasonable technique for the treatment of POP.  Moreover, these researchers stated that further studies are needed to prove such a technique versus alternative surgeries.

Miele and associates (2021) stated that minimally invasive procedures derived from sacrocolpopexy are considered the gold standard in the treatment of apical POP; however, dissection at the level of the promontory may be challenging, especially in obese women and when an anatomical variation exists.  This may be associated with rare but serious neurological or ureteral morbidity as well as life-threatening vascular injury.  These investigators described the technique of a new combined laparoscopic-vaginal lateral suspension in hysteropexy with cistocele and rectocele.  The technique entailed 2 times.  During the vaginal time, a polypropylene mesh is fixed to the cervical fascia and the 2 extremities were introduced in the abdominal cavity via the Douglas pouch.  During the laparoscopic time, a retroperitoneal tunnel is made along the walls of the lateral abdominal walls; thereafter, each of the 2 extremities of the mesh was passed via the omolateral tunnel and "tension-free" suspended to the abdominal wall.  The authors concluded that this new combined technique may allow a safer approach, reducing the risks of serious complications.  Moreover, it led to a more physiological orientation of the vaginal axis.  These researchers stated that further controlled studies are needed to confirm these investigators’ suggestion.

Barbato and co-workers (2021) noted that although sacrocolpopexy and sacrohysteropexy are the most performed surgical techniques, they are associated with serious complications.  Laparoscopic-vaginal suspension appears reproducible and safe to learn.  In a retrospective study, these researchers analyzed a small case series of their initial experience of laparoscopic-vaginal suspension with mesh focusing on the technical aspects of the technique.  Between November 2017 and January 2020, a total of 15 patients underwent laparoscopic-vaginal suspension for repair of POP.  Despite the small number, for a minimally invasive skilled surgeon, these investigators noticed a significant reduction of the learning curve to become proficient in this procedure.  The authors concluded that the diagnosis and management of POP are further complicated by what is considered "successful" treatment.  These researchers stated that laparoscopic-vaginal suspension is a feasible surgical procedure for 1-stage treatment of POP.  These preliminary findings need to be validated by well-designed studies.

Campagna and colleagues (2021) noted that abdominal lateral suspension with mesh represents an alternative approach to suspend the vaginal apex.  In a systematic review, these investigators examined the available evidence on the anatomical and functional outcomes, and intra- and post-operative complications of this technique with minimally invasive approach (laparoscopic/robotic).  They carried out a systematic literature search using Medline/PubMed, SCOPUS, Web of Science.  Two authors extracted data on baseline characteristics (age, BMI, prior pelvic reconstructive surgery, pre-operative POP stage), peri-operative outcomes (operative time, estimated blood loss [EBL], intra-operative and post-operative complications, admission time), objective and subjective success rate, surgical failure, time of follow-up.  Data were presented descriptively.  A total of 13 studies were included in the review.  The overall number of patients for this analysis was 1,066.  Patients referred for laparoscopic/robotic lateral suspension were most frequently post-menopausal, aged 50 to 65 years, BMI greater than or equal to 25 kg/m2; 22.2 % were already hysterectomized, while 17 % had already a previous POP surgery.  Operative time ranged from 78.4 ± 29.7 to 254 ± 45 mins.  The overall anatomic success was more than 90 % in the apical compartment and more than 88 % in the anterior compartment.  Subjective cure rate varied from 78.4 % to 100 % in medium-term follow-up.  Post-operative complication grade of greater than or equal to 3 according to Claiven-Dindo Scale was 1.03 %.  Mesh erosion rate varied between 0 % and 13 %.  The authors concluded that the findings of this systematic review suggested feasibility, safety, and efficacy of minimally invasive lateral suspension with optimal anatomical and functional outcomes.  Moreover, these researchers stated that well-designed RCTs are needed to confirm these findings.

An UpToDate review on “Pelvic organ prolapse in women: Epidemiology, risk factors, clinical manifestations, and management” (Rogers and Fashokun, 2021) does not mention laparoscopic-vaginal lateral suspension as a management / therapeutic option.

Furthermore, the Society of Obstetricians and Gynecologists of Canada (SOGC)’s clinical practice guideline on “Surgical management of apical pelvic organ prolapse in women” (Geoffrion and Larouche, 2021) does not mention laparoscopic-vaginal lateral suspension as a management / therapeutic option.

Anterior Approach Versus Posterior Sacrospinous Ligament Fixation for Pelvic Organ Prolapse

In a descriptive, observational study, Bastani et al (2022) compared anterior sacrospinous ligament fixation (SSLF) with the standard posterior SSLF concerning complications and outcomes in patients with apical compartment POP.  This study employed prospective data collected from 2 referral urogynecological centers.  The trial cohort represented all 135 women in the authors’ prospective study who underwent anterior approach bilateral anterior or unilateral posterior meshless SSLF from January 2018 to December 2020 using the PFDI-20 questionnaire and the POP-Q system pre- and post-operatively.  The objective success rate was evaluated by the number of POP recurrence cases and total vaginal length (TVL) post-operatively.  Patients were followed-up for at least 6 months (range of 6 to 18 months).  Data were analyzed using SPSS version 21; p < 0.05 was considered statistically significant.  A total of 67 (49.6 %) patients underwent posterior SSLF, and 68 (50.4 %) underwent anterior SSLF.  The mean age of patients was 58.2 ± 9.7 years and 64.9 ± 11.6 years, respectively (p < 0.001).  Most patients who underwent the posterior approach had stage-III apical prolapse (74.6 %), while 65.5 % of those who underwent anterior SSLF had stage-II apical prolapse (p < 0.001).  Following the treatment, no significant difference was detected between these 2 vaginal approaches in terms of subjects’ satisfaction rate (p > 0.05); 1 case of post-operative recurrence was found in the posterior group, which ultimately led to surgical retreatment.  There were no major intra- or post-operative complications in the groups.  Post-operative TVL was higher in the anterior SSLF group (p < 0.001).  The post-operative POPDI-6, CRADI-8, UDI-6, and PFDI-20 decreased significantly compared to pre-operative status in both groups (p < 0.001).  The authors concluded that it appeared that the anterior SSLF approach could be regarded as effective as the posterior approach in the management of apical POP; thus, the proper surgical technique could be chosen according to the surgeon's expertise and other compartment's prolapse status.

Sacrospinous Ligament Fixation Versus Uterosacral Ligaments Suspension for Pelvic Organ Prolapse

In a systematic review and meta-analysis, Chen et al (2022) compared the safety and effectiveness of SSLF and uterosacral ligaments suspension (ULS) for surgical correction of POP.  Comparative studies were identified in PubMed, Embase, Medline, Cochrane library, Medicine and clinicaltrials.gov databases; RCTs, prospective and retrospective cohort studies were included.  Primary outcomes included anatomical success rate (defined as anterior or posterior vaginal wall beyond the hymen), surgical success rate, recurrence and total complication rate, while secondary outcomes included specific complications rates.  Data were analyzed using Revman (Version 5.4).  After searching databases and removing the duplicate studies, a total of 57 articles had entered the screening stage.  Finally, 9 moderate and high-quality studies (4 RCTs and 5 retrospective studies) with 4,516 subjects were included.  For primary outcomes, there was no statistical difference between the 2 groups regarding surgical success rate (RR = 1.00; 95 % CI: 0.91 to 1.01; I2 = 0 %; p = 0.98), anatomical success (RR = 0.90; 95 % CI: 0.78 to 1.05; I2 = 61 %; p =0.19), recurrence rate (RR = 1.26; 95 % CI: 0.85 to 1.87; I2 = 75 %; p = 0.24) and total complication rate (RR = 1.07; 95 % CI: 0.89 to 1.28; I2 = 33 %; p = 0.47).  Subgroup analysis regarding different follow-up times (1, 2 and 5 years) and stages (stage 2 and stage 3 to 4) found similar results in primary outcomes.  The authors concluded that SSLF and ULS exhibited the same safety and effectiveness for patients; however, SSLF appeared to exhibit lower complication rates of vaginal granulation tissue and urethral injury and is gradually favored by surgeons because of its short operation time and simple operation.  Moreover, these researchers stated that  there is still a need for more high-quality research, especially in terms of the incidence of complications.

Tension-Free Vaginal Tape on Pelvic Organ Prolapse Complicated by Stress Urinary Incontinence

He et al (2021) noted that patients with POP combined with SUI require pelvic floor repair and surgical treatment; however, there is currently no systematic evaluation of the treatment effect.  These investigators searched PubMed, Medline, Embase, Elsevier, the Cochrane Library, Web of science, and other databases for RCTs published between January 2000 and December 2020 regarding the use of tension-free vaginal tape (TVT) for the treatment of POP combined with SUI.  Quality evaluation of the articles included in this study was carried out in accordance with the Cochrane Work Manual (5.3), and RevMan 5.3 software was employed to perform meta-analysis of the data extracted from literature meeting the requirements.  A total of 10 articles were included, entailing a total of 1,361 subjects, including 553 in the control group (a different surgical treatment) and 808 in the observation group (single TVT or TVT combined with pelvic floor repair).  The bias evaluation results showed that all of the included literature was rated as level B, so there was no need for sensitivity analysis.  The meta-analysis showed that the combined effect size of the clinical cure rate was (OR of 3.82; 95 % CI: 1.39 to 10.52; Z = 2.59, p = 0.010), and the combined effect size of the clinical complication rate was (risk difference [RD] of -0.09; 9% CI: -0.16 to -0.02; Z = 2.38; p = 0.02).  The results showed that the clinical cure rate of the observation group was significantly higher than that of the control group, while the clinical complication rate was significantly lower than that of the control group (p < 0.05).  The authors concluded that TVT surgery or TVT combined with pelvic floor repair surgery could significantly improve the cure rate of patients with POP combined with SUI; and reduced the incidence of post-operative complications.  These investigators stated that TVT is a suitable surgical method for the treatment of patients with POP combined with SUI.

Bilateral Abdominal Sacrocolpopexy with Polyvinylidene Fluoride Mesh

Rajshekhar and colleagues (2016) evaluated the safety and effectiveness of a modified technique of bilateral abdominal sacrocolpopexy in which both utero-sacral ligaments are replaced with polyvinylidene fluoride mesh to provide support to the cervix (cervico-sacropexy [CESA]) or vaginal vault (vagino-sacropexy [VASA]). In a retrospective, observational study, a total of 50 women with post-hysterectomy vault prolapse or recurrent apical prolapse following previous vaginal repair underwent bilateral sacrocolpopexy between July 1, 2013, and December 31, 2014.  Before surgery and 3 months afterwards, prolapse was assessed using the Pelvic Organ Prolapse Quantification scale and functional outcomes were recorded using the International Consultation on Incontinence Questionnaire for vaginal symptoms and urinary incontinence.  At 3 months, 47 (94 %) patients reported no bulge symptoms and the mean point C was -7.6.  Complications comprised bladder injury in 1 (2 %) and minor wound problems in 3 (6 %) patients.  No mesh erosion was reported.  The authors concluded that bilateral abdominal sacrocolpopexy appeared to be a safe and effective option for apical prolapse.  However, they stated that longer-term follow-up is needed to detect prolapse recurrence and mesh-related complications.

Surgical Results in Pelvic Organ Prolapse Surgery with the Use of Polyvinylidene Fluoride (PVDF) Mesh

Eslami et al (2022) examined the mid-term safety and functional outcomes of trans-vaginal anterior vaginal wall prolapse repair using polyvinylidene fluoride (PVDF) mesh (DynaMesh-PR4) by the double trans-obturator technique (TOT).  Between 2015 and 2020, these researchers prospectively included women with symptomatic high-stage anterior vaginal wall prolapse with or without uterine prolapse or SUI in the study.  Subjects underwent trans-vaginal repair of the prolapse using PVDF mesh in 2 medical centers.  They followed all patients for at least 12 months.  These researchers recorded the characteristics of vaginal and sexual symptoms, UI, and prolapse stage pre- and post-operatively using International Consultation on Incontinence Questionnaire-Vaginal Symptoms (ICIQ-VS), International Consultation on Incontinence Questionnaire-Urinary Incontinence-Short Form (ICIQ-UI-SF), and the POP-Q system, respectively.  A total of 108 women were included in the final analysis with a mean follow-up time of 34.5 ± 18.6 months.  The anatomical success was achieved in 103 (95.4 %) patients.  There was a significant improvement in patients' vaginal symptoms, UI, and quality of life (QOL) scores post-operatively (p < 0.0001).  Only 6 subjects (5.5 %) had mesh extrusion, 5 of whom were managed successfully.  The total rates of complications and de-novo urinary symptoms were 21.3 % and 7.4 %, respectively.  Significant pain was reported in 17 cases (15.7 %).  The authors concluded that these findings showed that the use of PVDF mesh in the double TOT technique for anterior vaginal wall prolapse repair was a safe procedure with high anatomic and functional success rates and acceptable complication rates in mid-term follow-up.

Karalis et al (2023) noted that synthetic materials have been used for the surgical treatment of SUI and POP.  In the past 25 years, these materials were composed mostly of polypropylene (PP), whereas recently the use of PVDF is of increasing interest due to its characteristics.  In a systematic review and meta-analysis, these investigators compared the findings following SUI/POP surgery using PVDF versus PP materials by synthesizing the data of relevant existing literature.  This review/meta-analysis included clinical trials, case-control studies, or cohort studies written in the English language.  The search strategy included the electronic databases Medline, Embase, and Cochrane, and grey literature (congresses IUGA, EUGA, AUGS, FIGO).  All studies have to provide numeric data or odds ratio of developing a specific outcome in surgeries with PVDF compared with outcomes of other used materials.  No restrictions of race or ethnicity were applied, nor chronological restrictions.  Exclusion criteria were studies that included patients with cognitive impairment, dementia, stroke, or central nervous system (CNS) trauma.  All studies were screened by 2 reviewers, initially by title and abstract, and afterward by full text.  Disagreements were resolved through mutual consent.  All studies were assessed for their quality and bias risk.  Data were extracted using a data extraction form formulated in a Microsoft Excel spreadsheet.  The findings were divided into studies dealing only with SUI patients, studies dealing only with POP patients, and cumulative analysis of variables expressed in both SUI and POP surgery.  The primary outcomes were the rates of post-operative recurrence, mesh erosion, and post-operative pain after surgery with PVDF compared to PP.  The secondary outcomes were post-operative sexual dissatisfaction, overall satisfaction rates, hematoma, urinary tract infection (UTI), de-novo UI, and re-operation rate.  No differences in the post-operative rates of SUI/POP recurrence, mesh erosion, and pain were found after surgery with PVDF versus surgery with PP.  Patients after SUI surgery with PVDF tapes had statistically significant lower rates of de-novo urgency compared to the PP group (OR = 0.38 [0.18 to 0.88], p = 0.01); patients after POP surgery with PVDF materials had statistically significant lower rates of de-novo sexual dysfunction compared to the PP group (OR = 0.12 [0.03 to 0.46], p = 0.002).  The authors concluded that this study provided evidence that the use of PVDF in SUI/POP surgeries could be a valid alternative to PP.  Moreover, these researchers stated that these findings were limited by uncertainty due to the overall low quality of the existent data.  They stated that further research and validation would contribute to better surgical techniques.

Guidance from the National Institute for Health and Care Excellence (NICE, 2020) concluded; "Evidence on the safety and efficacy of bilateral cervicosacropexy (CESA) or vaginosacropexy (VASA) using mesh for pelvic organ prolapse is inadequate in quantity and quality. Therefore, this procedure should only be used in the context of research." Bilateral cervicosacropexy (CESA) or vaginosacropexy (VASA) for pelvic organ prolapse are mesh procedures, done through open or laparoscopic approaches using general anesthesia. If the uterus is still in place, the first step of the procedure is a hysterectomy. A polyvinylidene fluoride (PVDF) mesh ligament-replacement structure is then placed within the peritoneal fold of both the left and right uterosacral ligaments.


References

The above policy is based on the following references:

Dynamic Magnetic Resonance Imaging

  1. Barbaric ZL, Marumoto AK, Raz S. Magnetic resonance imaging of the perineum and pelvic floor. Top Magn Reson Imaging.2001;12(2):83-92.
  2. Boyadzhan L, Raman SS, Raz S. Role of static and dynamic MR imaging in surgical pelvic floor dysfunction. Radiographics.2008;28(4):949-967. 
  3. Comiter CV, Vasavada SP, Barbaric ZL, at al. Grading pelvic prolapse and pelvic floor relaxation using dynamic magnetic resonance imaging. Urology. 1999;54(3):454-457.
  4. Delamarre JB, Kruyt RH, Doornbos J, et al. Anterior rectocele: Assessment with radiographic defecography, dynamic magnetic resonance imaging, and physical examination. Dis Colon Rectum. 1994;37(3):249-259.
  5. Dohke M, Mitchell DG, Vasavada SP. Fast magnetic resonance imaging of pelvic organ prolapse. Tech Urol. 2001;7(2):133-138.
  6. Goodrich MA, Webb MJ, King BF, et al. Magnetic resonance imaging of pelvic floor relaxation: Dynamic analysis and evaluation of patients before and after surgical repair. Obstet Gynecol. 1993;82(6):883-891.
  7. Guffler H, DeGregorio G, Dohnicht S, et al. Dynamic MRI after surgical repair for pelvic organ prolapse. J Comput Assist Tomogr. 2002;26(5):734-739.
  8. Hodroff MA, Stolpen AH, Denson MA, et al. Dynamic magnetic resonance imaging of the female pelvis: The relationship with the Pelvic Organ Prolapse quantification staging system. J Urol. 2002;167(3):1353-1355.
  9. Macura KJ. Magnetic resonance imaging of pelvic floor defects in women. Top Magn Reson Imaging. 2006;17(6):417-426.
  10. Marinkovic SP, Stanton SL. Incontinence and voiding difficulties associated with prolapse. J Urol.2004;171(3):1021-1028.
  11. Pannu HK. Dynamic MR imaging of female organ prolapse. Radiol Clin North Am. 2003;41(2):409-423.
  12. Pannu HK, Kaufman HS, Cundiff GW, et al. Dynamic MR imaging of pelvic organ prolapse: Spectrum of abnormalities. Radiographics. 2000;20(6):1567-1682.
  13. Rodriguez LV, Raz S. Diagnostic imaging of pelvic floor dysfunction. Curr Opin Urol.2001;11(4):423-428.
  14. Savoye-Collet C, Koning E, Dacher JN. Radiologic evaluation of pelvic floor disorders. Gastroenterol Clin North Am. 2008;37(3):553-567.
  15. Singh K, Reid WM, Berger LA. Assessment and grading of pelvic organ prolapse by use of dynamic magnetic resonance imaging.  Am J Obstet Gynecol. 2001;185(1):71-77.  
  16. Weidner AC, Low VHS. Imaging studies of the pelvic floor. Obstet Gynecol Clin North Am. 1998;25(4):825-848.
  17. Yang A, Mostwin JL, Rosenshein NB, Zerhouni EA. Pelvic floor descent in women: Dynamic evaluation with fast MR imaging and cinematic display. Radiology.1991;179(1):25-33.

Laparoscopic Suture Retropexy

  1. Akbari RP, Read TE. Laparoscopic rectal surgery: Rectal cancer, pelvic pouch surgery, and rectal prolapse. Surg Clin North Am. 2006;86(4):899-914.
  2. Benoist S, Taffinder N, Gould S, et al. Functional results two years after laparoscopic rectopexy. Am J Surg. 2001;182(2):168-173.
  3. Byrne CM, Smith SR, Solomon MJ, et al. Long-term functional outcomes after laparoscopic and open rectopexy for the treatment of rectal prolapse. Dis Colon Rectum. 2008;51(11):1597-1604.
  4. Felt-Bersma RJ, Tiersma ES, Cuesta MA. Rectal prolapse, rectal intussusception, rectocele, solitary rectal ulcer syndrome, and enterocele. Gastroenterol Clin North Am. 2008;37(3):645-668.
  5. Graf W, Stefansson T, Arvidsson D, Pahlman L. Laparoscopic suture rectopexy. Dis Colon Rectum.1995;38(2):211-212.
  6. Heah SM, Hartley JE, Hurley J, et al. Laparoscopic suture rectopexy without resection is effective treatment for full-thickness rectal prolapse. Dis Colon Rectum. 2000;43(5):638-643.
  7. Hsu A, Brand MI, Saclarides TJ. Laparoscopic rectopexy without resection: A worthwhile treatment for rectal prolapse in patients without prior constipation. Am Surg. 2007;73(9):858-861.
  8. Lechaux D, Trebuchet G, Siproudhis L, Campion JP. Laparoscopic rectopexy for full-thickness rectal prolapse: A single-institution retrospective study evaluating surgical outcome. Surg Endosc. 2005;19(4):514-518.
  9. Madiba TE, Baig MK, Wexner SD. Surgical management of rectal prolapse. Arch Surg. 2005;140(1):63-73.
  10. McNevin MS. Overview of pelvic floor disorders. Surg Clin North Am. 2010;90(1):195-205.
  11. Senagore AJ. Management of rectal prolapse: The role of laparoscopic approaches. Semin Laparosc Surg. 2003;10(4):197-202.
  12. Tou S, Brown SR, Malik AI, Nelson RL. Surgery for complete rectal prolapse in adults. Cochrane Database Syst Rev. 2008;(4):CD001758.

LeFort Colpocleisis

  1. Buchsbaum GM, Lee TG. Vaginal obliterative procedures for pelvic organ prolapse: A systematic review. Obstet Gynecol Surv. 2017;72(3):175-183.
  2. Current Obstetric & Gynecologic Diagnosis & Treatment. 9th Edition. 2003.
  3. Danforth’s Obstetrics and Gynecology. 8th Edition. 1999.
  4. Ryan; Kistner’s Gynecology & Women’s Health. 7th Edition. 1999.
  5. TeLinde’s Operative Gynecology. 8th Edition. 1997.
  6. Vaginal Surgery. 4th Edition. 1996.
  7. Wang X, Chen Y, Hua K. Pelvic symptoms, body image, and regret after LeFort colpocleisis: A long-term follow-up. J Minim Invasive Gynecol. 2017;24(3):415-419.

Genetic Testing for Pelvic Organ Prolapse

  1. Cartwright R, Kirby AC, Tikkinen KA, et al. Systematic review and metaanalysis of genetic association studies of urinary symptoms and prolapse in women. Am J Obstet Gynecol. 2015;212(2):199.e1-e24.
  2. Khadzhieva MB, Kolobkov DS, Kamoeva SV, Salnikova LE. Expression changes in pelvic organ prolapse: A systematic review and in silico study. Sci Rep. 2017;7(1):7668.
  3. Levin PJ, Visco AG, Shah SH, et al. Characterizing the phenotype of advanced pelvic organ prolapse. Female Pelvic Med Reconstr Surg. 2012;18(5):299-302.
  4. Ward RM, Velez Edwards DR, Edwards T, et al. Genetic epidemiology of pelvic organ prolapse: A systematic review. Am J Obstet Gynecol. 2014;211(4):326-335.
  5. Wu JM, Visco AG, Grass EA, et al. Comprehensive analysis of LAMC1 genetic variants in advanced pelvic organ prolapse. Am J Obstet Gynecol. 2012;206(5):447.e1-e6.

Bilateral Abdominal Sacrocolpopexy with Polyvinylidene Fluoride Mesh

  1. Rajshekhar S, Mukhopadhyay S, Morris E. Early safety and efficacy outcomes of a novel technique of sacrocolpopexy for the treatment of apical prolapse. Int J Gynaecol Obstet. 2016;135(2):182-186.

Biologic Graft

  1. Juma S, Raheem OA. Solvent-dehydrated dermal allograft (AxisTM) augmented cystocele repair: Longitudinal results. Int Urogynecol J. 2017;28(8):1159-1164.
  2. Schimpf MO, Abed H, Sanses T, et al; Society of Gynecologic Surgeons Systematic Review Group. Graft and mesh use in transvaginal prolapse repair: A systematic review. Obstet Gynecol. 2016;128(1):81-91.
  3. Seitz M, Jirschele K, Tran A, et al. A comparison of sacrospinous hysteropexy augmented with polypropylene mesh versus human dermis at 12-month follow-up: An ambidirectional study. Female Pelvic Med Reconst Surg. 2020;26(10):607-611.

Sacrocolpopexy

  1. Alas AN, Anger JT. Management of apical pelvic organ prolapse. Curr Urol Rep. 2015;16(5):33.
  2. Costantini E, Brubaker L, Cervigni M, et al. Sacrocolpopexy for pelvic organ prolapse: Evidence-based review and recommendations. Eur J Obstet Gynecol Reprod Biol. 2016;205:60-65.
  3. Jelovsek JE. Pelvic organ prolapse in women: Choosing a primary surgical procedure. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed July 2016.
  4. Kenton K. Pelvic organ prolapse in women: Surgical repair of apical prolapse (uterine or vaginal vault prolapse). UpToDate [online serial]. Waltham, MA: UpToDate; reviewed July 2016.
  5. Wagner L, Meurette G, Vidart A, et al. Laparoscopic sacrocolpopexy for pelvic organ prolapse: Guidelines for clinical practice. Prog Urol. 2016;26 Suppl 1:S27-S37.

Surgical Treatment of Primary Pelvic Organ Prolapse

  1. Le Normand L, Cosson M, Cour F, et al. Clinical practice guidelines: Synthesis of the guidelines for the surgical treatment of primary pelvic organ prolapse in women by the AFU, CNGOF, SIFUD-PP, SNFCP, and SCGP. J Gynecol Obstet Biol Reprod (Paris). 2016;45(10):1606-1613.

Trans-Labial Ultrasound for the Assessment of Levator Ani Defects and Levator Ani Biometry in Women With Pelvic Organ Prolapse

  1. Fashokun TB, Rogers RG. Pelvic organ prolapse in women: Diagnostic evaluation. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed July 2017.
  2. Notten KJ, Vergeldt TF, van Kuijk SM, et al. Diagnostic accuracy and clinical implications of translabial ultrasound for the assessment of levator ani defects and levator ani biometry in women with pelvic organ prolapse: A systematic review. Female Pelvic Med Reconstr Surg. 2017;23(6):420-428.

Use of Mesh Repair for Anterior Compartment Prolapse

  1. Chughtai B, Barber MD, Mao J, et al. Association between the amount of vaginal mesh used with mesh erosions and repeated surgery after repairing pelvic organ prolapse and stress urinary incontinence. JAMA Surg. 2017;152(3):257-263.
  2. Maher C, Feiner B, Baessler K, et al. Surgery for women with anterior compartment prolapse. Cochrane Database Syst Rev. 2016;11:CD004014.

Vaginal Tactile Imaging

  1. Egorov V, Murphy M, Lucente V, et al. Quantitative assessment and interpretation of vaginal conditions. Sex Med. 2018;6(1):39-48.
  2. Egorov V, van Raalte H, Sarvazyan AP. Vaginal tactile imaging. IEEE Trans Biomed Eng. 2010;57(7):1736-1744.
  3. Lucente V, van Raalte H, Murphy M, Egorov V. Biomechanical paradigm and interpretation of female pelvic floor conditions before a treatment. Int J Womens Health. 2017;9:521-550.
  4. van Raalte H, Egorov V. Tactile imaging markers to characterize female pelvic floor conditions. Open J Obstet Gynecol. 2015;5(9):505-515.

Anterior Colporrhaphy Augmented with Synthetic Mesh for Pelvic Organ Prolapse

  1. de Mattos Lourenco TR, Pergialiotis V, Duffy JMN, et al. A systematic review on reporting outcomes and outcome measures in trials on synthetic mesh procedures for pelvic organ prolapse: Urgent action is needed to improve quality of research. Neurourol Urodyn. 2019;38(2):509-524.
  2. Slade E, Daly C, Mavranezouli I, et al. Primary surgical management of anterior pelvic organ prolapse: A systematic review, network meta-analysis and cost-effectiveness analysis. BJOG. 2020;127(1):18-26.

Laser Therapy for the Treatment of Pelvic Organ Prolapse

  1. Mackova K, Van Daele L, Page A-S, et al. Laser therapy for urinary incontinence and pelvic organ prolapse: A systematic review. BJOG. 2020;127(11):1338-1346.
  2. Rogers RG, Fashokun TB. Pelvic organ prolapse in women: Epidemiology, risk factors, clinical manifestations, and management. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed August 2020.

Pelvic Floor Ultrasonography for the Diagnosis of Pelvic Organ Prolapse

  1. Fashokun TB, Rogers RG. Pelvic organ prolapse in women: Diagnostic evaluation. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed August 2020.
  2. Gao Y, Zhao Z, Yang Y, et al. Diagnostic value of pelvic floor ultrasonography for diagnosis of pelvic organ prolapse: A systematic review. Int Urogynecol J. 2020;31(1):15-33.

Combined Laparoscopic-Vaginal Lateral Suspension for the Treatment of Pelvic Organ Prolapse

  1. Barbato G, Rollo S, Borri A, et al. Laparoscopic vaginal lateral suspension: Technical aspects and initial experience. Minerva Surg. 2021;76(3):245-251.
  2. Campagna G, Vacca L, Panico G, et al. Laparoscopic lateral suspension for pelvic organ prolapse: A systematic literature review. Eur J Obstet Gynecol Reprod Biol. 2021;264:318-329. 
  3. Geoffrion R, Larouche M. Guideline No. 413: Surgical management of apical pelvic organ prolapse in women. J Obstet Gynaecol Can. 2021;43(4):511-523. 
  4. Martinello R, Scutiero G, Stuto A, et al. Correction of pelvic organ prolapse by laparoscopic lateral suspension with mesh: A clinical series. Eur J Obstet Gynecol Reprod Biol. 2019;240:351-356.
  5. Miele GM, Marra PM, Cefalì K, et al. A new combined laparoscopic-vaginal lateral suspension procedure for the treatment of pelvic organ prolapse. Urology. 2021;149:263.
  6. Rogers RG, Fashokun TB. Pelvic organ prolapse in women: Epidemiology, risk factors, clinical manifestations, and management.

Sacrospinous Ligament Fixation for Pelvic Organ Prolapse

  1. Bastani P, Tayebi S, Ghabousian A, et al. Outcomes of the anterior approach versus posterior sacrospinous ligament fixation for pelvic organ prolapse. Int Urogynecol J. 2022;33(7):1857-1862.
  2. Chen Y, Peng L, Zhang J, et al. Sacrospinous ligament fixation vs uterosacral ligaments suspension for pelvic organ prolapse: A systematic review and meta-analysis. Urology. 2022;166:133-139.

Tension-Free Vaginal Tape on Pelvic Organ Prolapse Complicated by Stress Urinary Incontinence

  1. He P, Zou J, Gong B, et al. Systematic review and meta-analysis of the efficacy of tension-free vaginal tape on pelvic organ prolapse complicated by stress urinary incontinence. Ann Palliat Med. 2021;10(12):12589-12597.

Polyvinylidene Fluoride Mesh (DynaMesh-PR4) for Pelvic Organ Prolapse Surgery

  1. Eslami M-J, Zargham M, Gholipour F, et al. Transvaginal repair of anterior vaginal wall prolapse with polyvinylidene fluoride (PVDF) mesh: An alternative for previously restricted materials? Int Urogynecol J. 2022;33(7):1989-1997.
  2. Karalis T, Tsiapakidou S, Grimbizis GF, Mikos T. Surgical results in POP/UI surgery after using PVDF compared to other materials. A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2023;284:110-119.
  3. National Institute for Health and Care Excellence (NICE). Bilateral cervicosacropexy (CESA) or vaginosacropexy (VASA) using mesh for pelvic
    organ prolapse. Interventional Procedure Guidance 669. London, UK: NICE; March 4, 2020.